Scientific and physics-aware machine learning, and data assimilation
  • Luca Magri
    • Group
    • Collaborations
  • Publications
  • Research
    • Overview
    • Scientific machine learning >
      • Physics-aware machine learning
      • Chaotic time series forecasting
      • Nonlinear model reduction
      • Super-resolution and reconstruction
    • Real-time digital twins and data assimilation >
      • Inferring unknown unknowns: Bias-aware data assimilation
    • Optimization >
      • Bayesian optimisation
      • Chaotic systems
    • Mathematical modelling of multi-physics fluids >
      • Reacting flows and sound
    • Quantum computing and machine learning >
      • Solving nonlinear equations with quantum algorithms
      • Linear methods from quantum mechanics
    • Data and codes
  • Jobs/grants
  • Outreach
    • Research Centre in Data-Driven Engineering
    • Data-driven methods, machine learning and optimization
    • Data-driven Dynamical Systems Analysis
  • Consultancy
  • Teaching
    • University modules
    • Artificial intelligence for engineering
    • Mathematical methods
    • Misc
  • Contact

DNS database of a bluff-body wake

A database of the dynamics of a wake past a bluff body solved by direct numerical simulation is available.
Please contact me to find out more about the cases I can share.

For more details:
Symmetry breaking in a 3D bluff-body wake
Rigas, G.,  Esclapez, L. & Magri, L.
Proceedings of the Center for Turbulence Research Summer Program (2016), pp. 193-202.
Download: published version


Github repository

https://github.com/MagriLab/ 
© 2024 Luca Magri
  • Luca Magri
    • Group
    • Collaborations
  • Publications
  • Research
    • Overview
    • Scientific machine learning >
      • Physics-aware machine learning
      • Chaotic time series forecasting
      • Nonlinear model reduction
      • Super-resolution and reconstruction
    • Real-time digital twins and data assimilation >
      • Inferring unknown unknowns: Bias-aware data assimilation
    • Optimization >
      • Bayesian optimisation
      • Chaotic systems
    • Mathematical modelling of multi-physics fluids >
      • Reacting flows and sound
    • Quantum computing and machine learning >
      • Solving nonlinear equations with quantum algorithms
      • Linear methods from quantum mechanics
    • Data and codes
  • Jobs/grants
  • Outreach
    • Research Centre in Data-Driven Engineering
    • Data-driven methods, machine learning and optimization
    • Data-driven Dynamical Systems Analysis
  • Consultancy
  • Teaching
    • University modules
    • Artificial intelligence for engineering
    • Mathematical methods
    • Misc
  • Contact